5,967 research outputs found

    Order-disorder transitions in a sheared many body system

    Get PDF
    Motivated by experiments on sheared suspensions that show a transition between ordered and disordered phases, we here study the long-time behavior of a sheared and overdamped 2-d system of particles interacting by repulsive forces. As a function of interaction strength and shear rate we find transitions between phases with vanishing and large single-particle diffusion. In the phases with vanishing single-particle diffusion, the system evolves towards regular lattices, usually on very slow time scales. Different lattices can be approached, depending on interaction strength and forcing amplitude. The disordered state appears in parameter regions where the regular lattices are unstable. Correlation functions between the particles reveal the formation of shear bands. In contrast to single particle densities, the spatially resolved two-particle correlation functions vary with time and allow to determine the phase within a period. As in the case of the suspensions, motion in the state with low diffusivity is essentially reversible, whereas in the state with strong diffusion it is not.Comment: 12 pages, 13 figures; Supplemental Movies: https://youtu.be/oFcrWo9Vs6E, https://youtu.be/tcowb7o05JQ, https://youtu.be/GkEUwycn7V4, https://youtu.be/k-XCo8CWFU

    Non-Arrhenius ionic conductivities in glasses due to a distribution of activation energies

    Full text link
    Previously observed non-Arrhenius behavior in fast ion conducting glasses [\textit{Phys.\ Rev.\ Lett.}\ \textbf{76}, 70 (1996)] occurs at temperatures near the glass transition temperature, TgT_{g}, and is attributed to changes in the ion mobility due to ion trapping mechanisms that diminish the conductivity and result in a decreasing conductivity with increasing temperature. It is intuitive that disorder in glass will also result in a distribution of the activation energies (DAE) for ion conduction, which should increase the conductivity with increasing temperature, yet this has not been identified in the literature. In this paper, a series of high precision ionic conductivity measurements are reported for 0.5Na2S+0.5[xGeS2+(1−x)PS5/2]0.5{Na}_{2}{S}+0.5[x{GeS}_{2}+(1-x){PS}_{5/2}] glasses with compositions ranging from 0≤x≤10 \leq x \leq 1. The impact of the cation site disorder on the activation energy is identified and explained using a DAE model. The absence of the non-Arrhenius behavior in other glasses is explained and it is predicted which glasses are expected to accentuate the DAE effect on the ionic conductivity.Comment: 2 figure

    Raman spectroscopy on etched graphene nanoribbons

    Full text link
    We investigate etched single-layer graphene nanoribbons with different widths ranging from 30 to 130 nm by confocal Raman spectroscopy. We show that the D-line intensity only depends on the edge-region of the nanoribbon and that consequently the fabrication process does not introduce bulk defects. In contrast, the G- and the 2D-lines scale linearly with the irradiated area and therefore with the width of the ribbons. We further give indications that the D- to G-line ratio can be used to gain information about the crystallographic orientation of the underlying graphene. Finally, we perform polarization angle dependent measurements to analyze the nanoribbon edge-regions

    First Season QUIET Observations: Measurements of Cosmic Microwave Background Polarization Power Spectra at 43 GHz in the Multipole Range 25 ≤ ℓ ≤ 475

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43 GHz and 94 GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the cosmic microwave background (CMB). QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hr of data were collected, first with the 19 element 43 GHz array (3458 hr) and then with the 90 element 94 GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ≈1000 deg^2. This paper reports initial results from the 43 GHz receiver, which has an array sensitivity to CMB fluctuations of 69 μK√s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross-correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range ℓ = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3σ significance, the E-mode spectrum is consistent with the ΛCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35^(+1.06)_(–0.87). The combination of a new time-stream "double-demodulation" technique, side-fed Dragonian optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r = 0.1

    BIRinging Chromosomes through Cell Division—And Survivin' the Experience

    Get PDF

    Repetitive cerebral bleeding in an adult with Klippel-Trénaunay Syndrome

    Get PDF

    A Test of Fischer's Theory of Monetary Misperceptions and the Business Cycle in the Presence of Long-Term Contracts

    Get PDF
    This article uses multi-period ex ante anticipations of money supply growth to estimate the parameters of a model, suggested by Stanley Fischer, in which money affects real variables only through multi-period errors in anticipations. This model is tested against an alternative, first evaluated empirically by Robert Barro, in which money affects real variables only through single period errors in anticipations. The two models are compared using the "P" test procedure for non-nested models suggested by Davidson and MacKinnon. The small sample properties of the test are unknown. Random experiments are performed to approximate these properties. On the basis of estimated small scale distributions, the Fischer model rejects the Barro model at conventional levels, but is not rejected by it.Business Cycles; Cycle; Monetary; Money; Supply

    Characteristics of a New Carbonaceous Chondrite, Metal-Rich-Lithology Found in the Carbonaceous Chondrite Breccia Aguas Zarcas

    Get PDF
    The Aguas Zarcas meteorite fell in Costa Rica on 23 April 2019 at 21:07 local time, with a total mass of about 27 kg. Hundreds of fusion-crusted stones ranging from 0.1 to 1868 g were recovered (The Meteoritical Bulletin). The meteorite was classified as a CM chondrite, but some lithlogies show a different texture to that of CM. In this study, we investigated the petrography, mineral-ogy, chemistry, and isotopic composition of an unusual Metal-rich-lithology from this fresh fall
    • …
    corecore